EconPapers    
Economics at your fingertips  
 

Energy efficiency and risk management in public buildings: strategic model for robust planning

Emilio Cano (), Javier Moguerza, Tatiana Ermolieva and Yuri Ermoliev

Computational Management Science, 2014, vol. 11, issue 1, 25-44

Abstract: Due to deregulations of the energy sector and the setting of targets such as the 20/20/20 in the EU, operators of public buildings are now more exposed to instantaneous (short-term) market conditions. On the other hand, they have gained the opportunity to play a more active role in securing long-term supply, managing demand, and hedging against risk while improving existing buildings’ infrastructures. Therefore, there are incentives for the operators to develop and use a Decision Support System to manage their energy sub-systems in a more robust energy-efficient and cost-effective manner. In this paper, a two-stage stochastic model is proposed, where some decisions (so-called first-stage decisions) regarding investments in new energy technologies have to be taken before uncertainties are resolved, and some others (so-called second-stage decisions) on how to use the installed technologies will be taken once values for uncertain parameters become known, thereby providing a trade-off between long- and short-term decisions. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Decision making under uncertainty; Stochastic programming; Energy optimisation; Risk management (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10287-013-0177-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:11:y:2014:i:1:p:25-44

Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2

DOI: 10.1007/s10287-013-0177-3

Access Statistics for this article

Computational Management Science is currently edited by Ruediger Schultz

More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:25-44