Smart charging profiles for electric vehicles
Fernando Banez-Chicharro (),
Jesus Latorre () and
Andres Ramos ()
Computational Management Science, 2014, vol. 11, issue 1, 87-110
Abstract:
Electric vehicles (EVs) can help decarbonise the transportation sector, which is responsible for a great share of greenhouse gas emissions. Although different measures have been introduced to foster the penetration of EVs in the society, they have not been deployed at a large scale yet. Electric companies are concerned about the effects of introducing EVs into the grid, especially with a large amount. The charging pattern of EVs is the main factor that determines these effects. Unregulated charging (probably when returning home) would have undesirable consequences (e.g. increase in variable costs, emissions, reduction of reliability) for the system, it is therefore necessary to develop an “intelligent” charging strategy. These characteristics justify the existence of different smart charging profiles. It is also important to assess the effect of using day-ahead management systems instead of pre-set profiles. This document compares different possible strategies for charging EVs and their consequences in the power system. The impact on variable costs, emissions and renewable energy sources integration will be obtained using an operation planning model. The Spanish power system for 2020 is analysed under different EV penetration levels and charging strategies. The results show the benefits of using smart charging profiles instead of an unregulated profile, obtaining large cost reductions and maintaining system reliability levels. Moreover, the benefits of using a day-ahead management system are also evaluated, resulting in a small reduction of system variable cost compared to the use of pre-defined charging profiles. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Electric vehicles; Smart charging; RES integration; Wind spillage; Power system operation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10287-013-0180-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:11:y:2014:i:1:p:87-110
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-013-0180-8
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().