EconPapers    
Economics at your fingertips  
 

Log-robust portfolio management with parameter ambiguity

Ban Kawas () and Aurelie Thiele ()
Additional contact information
Ban Kawas: IBM Research Lab
Aurelie Thiele: Southern Methodist University

Computational Management Science, 2017, vol. 14, issue 2, No 4, 229-256

Abstract: Abstract We present a robust optimization approach to portfolio management under uncertainty when randomness is modeled using uncertainty sets for the continuously compounded rates of return, which empirical research argues are the true drivers of uncertainty, but the parameters needed to define the uncertainty sets, such as the drift and standard deviation, are not known precisely. Instead, a finite set of scenarios is available for the input data, obtained either using different time horizons or assumptions in the estimation process. Our objective is to maximize the worst-case portfolio value (over a set of allowable deviations of the uncertain parameters from their nominal values, using the worst-case nominal values among the possible scenarios) at the end of the time horizon in a one-period setting. Short sales are not allowed. We consider both the independent and correlated assets models. For the independent assets case, we derive a convex reformulation, albeit involving functions with singular Hessians. Because this slows computation times, we also provide lower and upper linear approximation problems and devise an algorithm that gives the decision maker a solution within a desired tolerance from optimality. For the correlated assets case, we suggest a tractable heuristic that uses insights derived in the independent assets case.

Keywords: Robust optimization; Weighted sum of exponentials; Log-robust portfolio management; Inner linear approximation; Outer linear approximation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s10287-017-0275-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:14:y:2017:i:2:d:10.1007_s10287-017-0275-8

Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2

DOI: 10.1007/s10287-017-0275-8

Access Statistics for this article

Computational Management Science is currently edited by Ruediger Schultz

More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:comgts:v:14:y:2017:i:2:d:10.1007_s10287-017-0275-8