An adaptive model with joint chance constraints for a hybrid wind-conventional generator system
Bismark Singh (),
David P. Morton and
Surya Santoso
Additional contact information
Bismark Singh: The University of Texas at Austin
David P. Morton: Northwestern University
Surya Santoso: The University of Texas at Austin
Computational Management Science, 2018, vol. 15, issue 3, No 12, 563-582
Abstract:
Abstract We analyze scheduling a hybrid wind-conventional generator system to make it dispatchable, with the aim of profit maximization. Our models ensure that with high probability we satisfy the day-ahead power promised by the model, using combined output of the conventional and wind generators. We consider two scenarios, which differ in whether the conventional generator must commit to its schedule prior to observing the wind-power realizations or has the flexibility to adapt in near real-time to these realizations. We investigate the synergy between the conventional generator and wind farm in these two scenarios. Computationally, the non-adaptive model is relatively tractable, benefiting from a strong extended-variable formulation as an integer program. The adaptive model is a two-stage stochastic integer program with joint chance constraints. Such models have seen limited attention in the literature because of the computational challenges they pose. However, we develop an iterative regularization scheme in which we solve a sequence of sample average approximations under a growing sample size. This reduces computational effort dramatically, and our empirical results suggest that it heuristically achieves high-quality solutions. Using data from a wind farm in Texas, we demonstrate that the adaptive model significantly outperforms the non-adaptive model in terms of synergy between the conventional generator and the wind farm, with expected profit more than doubled.
Keywords: Stochastic integer programming; Chance-constrained optimization; Wind power; Hybrid renewable system (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10287-018-0309-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:15:y:2018:i:3:d:10.1007_s10287-018-0309-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-018-0309-x
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().