A systematic approach for examining the impact of calibration uncertainty in disease modeling
Jing Voon Chen,
Julia L. Higle () and
Michael Hintlian
Additional contact information
Jing Voon Chen: University of Southern California
Julia L. Higle: University of Southern California
Michael Hintlian: University of Southern California
Computational Management Science, 2018, vol. 15, issue 3, No 11, 561 pages
Abstract:
Abstract In model-based analysis for comparative evaluation of strategies for disease treatment and management, the model of the disease is arguably the most critical element. A fundamental challenge in identifying model parameters arises from the limitations of available data, which challenges the ability to uniquely link model parameters to calibration targets. Consequently, the calibration of disease models leads to the discovery of multiple models that are similarly consistent with available data. This phenomenon is known as calibration uncertainty and its effect is transferred to the results of the analysis. Insufficient examination of the breadth of potential model parameters can create a false sense of confidence in the model recommendation, and ultimately cast doubt on the value of the analysis. This paper introduces a systematic approach to the examination of calibration uncertainty and its impact. We begin with a model of the calibration process as a constrained optimization problem and introduce the notion of plausible models which define the uncertainty region for model parameters. We illustrate the approach using a fictitious disease, and explore various methods for interpreting the outputs obtained.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10287-018-0329-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:15:y:2018:i:3:d:10.1007_s10287-018-0329-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-018-0329-6
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().