The wait-and-judge scenario approach applied to antenna array design
Algo Carè (),
Simone Garatti () and
Marco C. Campi ()
Additional contact information
Algo Carè: University of Brescia
Simone Garatti: Politecnico di Milano
Marco C. Campi: University of Brescia
Computational Management Science, 2019, vol. 16, issue 3, No 5, 499 pages
Abstract:
Abstract The scenario optimisation approach is a methodology for finding solutions to uncertain convex problems by resorting to a sample of data, which are called “scenarios”. In a min–max set-up, the solution delivered by the scenario approach comes with tight probabilistic guarantees on its risk defined as the probability that an empirical cost threshold will be exceeded when the scenario-based solution is adopted. While the standard theory of scenario optimisation has related the risk of the data-based solution to the number of optimisation variables, a more recent approach, called the “wait-and-judge” scenario approach, enables the user to assess the risk of the solution in a data-dependent way, based on the number of decisive scenarios (“support scenarios”). The aim of this paper is to illustrate the potentials of the wait-and-judge approach for min–max sample-based design and we shall consider to this purpose an antenna array design problem.
Keywords: Scenario approach; Data-driven optimisation; Min–max design (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10287-019-00345-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:16:y:2019:i:3:d:10.1007_s10287-019-00345-5
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-019-00345-5
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().