Using tropical optimization techniques in bi-criteria decision problems
Nikolai Krivulin ()
Additional contact information
Nikolai Krivulin: St. Petersburg State University
Computational Management Science, 2020, vol. 17, issue 1, No 5, 79-104
Abstract:
Abstract We consider decision problems of rating alternatives based on their pairwise comparisons according to two criteria. Given pairwise comparison matrices for each criterion, the problem is to find the overall scores of the alternatives. We offer a solution that involves the minimax approximation of the comparison matrices by a common consistent matrix of unit rank in terms of the Chebyshev metric in logarithmic scale. The approximation problem reduces to a bi-objective optimization problem to minimize the approximation errors simultaneously for both comparison matrices. We formulate the problem in terms of tropical (idempotent) mathematics, which focuses on the theory and applications of algebraic systems with idempotent addition. To solve the optimization problem obtained, we apply methods and results of tropical optimization to derive a complete Pareto-optimal solution in a direct explicit form ready for further analysis and straightforward computation. We then exploit this result to solve the bi-criteria decision problem of interest. As illustrations, we present examples of the solution of two-dimensional optimization problems in general form, and of a decision problem with four alternatives in numerical form.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10287-018-0341-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:17:y:2020:i:1:d:10.1007_s10287-018-0341-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-018-0341-x
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().