Risk attribution and interconnectedness in the EU via CDS data
R. Giacometti (),
G. Torri (),
G. Farina () and
M. E. Giuli ()
Additional contact information
R. Giacometti: University of Bergamo
G. Torri: University of Bergamo
G. Farina: Mediobanca S.P.A
M. E. Giuli: University of Pavia
Computational Management Science, 2020, vol. 17, issue 4, No 4, 549-567
Abstract:
Abstract The global financial crisis in 2008, and the European sovereign debt crisis in 2010, highlighted how credit risk in banking sectors cannot be analysed from a uniquely micro-prudential perspective, focused on individual institutions, but it has instead to be studied and regulated from a macro-prudential perspective, considering the banking sector as a complex system. Traditional risk management tools often fail to account for the complexity of the interactions in a financial system, and rely on simplistic distributional assumptions. In recent years machine learning techniques have been increasingly used, incorporating tools such as text mining, sentiment analysis, and network models in the risk management processes of financial institutions and supervisors. Network theory applications in particular are increasingly popular, as they allow to better model the intertwined nature of financial systems. In this work we set up an analytical framework that allows to decompose the credit risk of banks and sovereign countries in the European Union according to systematic (system-wide and regional) components. Then, the non-systematic components of risk are studied using a network approach, and a simple stress-test framework is set up to identify the potential transmission channels of distress and risk spillovers. Results highlight a relevant component of credit risk that is not explained by common factors, but can still be a potential vehicle for the transmission of shocks. We also show that due to the properties of the network structure, the transmission of shocks applied to different institutions is quite diversified, both in terms of breadth and speed. Our work is useful to both regulators and financial institutions, thanks to its flexibility and its requirement of data that can be easily available.
Keywords: Credit risk; Marshall–Olkin distribution; Risk attribution; Credit default swaps; Interconnectedness; Network theory; Stress test (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10287-020-00385-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:17:y:2020:i:4:d:10.1007_s10287-020-00385-2
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-020-00385-2
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().