Differential learning methods for solving fully nonlinear PDEs
William Lefebvre (),
Grégoire Loeper () and
Huyên Pham ()
Additional contact information
William Lefebvre: Université Paris Cité and Sorbonne Université
Grégoire Loeper: Monash University
Huyên Pham: Université Paris Cité and Sorbonne Université
Digital Finance, 2023, vol. 5, issue 1, No 8, 183-229
Abstract:
Abstract We propose machine learning methods for solving fully nonlinear partial differential equations (PDEs) with convex Hamiltonian. Our algorithms are conducted in two steps. First, the PDE is rewritten in its dual stochastic control representation form, and the corresponding optimal feedback control is estimated using a neural network. Next, three different methods are presented to approximate the associated value function, i.e., the solution of the initial PDE, on the entire space-time domain of interest. The proposed deep learning algorithms rely on various loss functions obtained either from regression or pathwise versions of the martingale representation and its differential relation, and compute simultaneously the solution and its derivatives. Compared to existing methods, the addition of a differential loss function associated with the gradient, and augmented training sets with Malliavin derivatives of the forward process, yields a better estimation of the PDE’s solution derivatives, in particular of the second derivative, which is usually difficult to approximate. Furthermore, we leverage our methods to design algorithms for solving families of PDEs when varying terminal condition (e.g., option payoff in the context of mathematical finance) by means of the class of DeepOnet neural networks aiming to approximate functional operators. Numerical tests illustrate the accuracy of our methods on the resolution of a fully nonlinear PDE associated with the pricing of options with linear market impact, and on the Merton portfolio selection problem.
Keywords: Fully nonlinear PDEs; Deep learning; Differential learning; Option pricing with market impact; C45; C63; G11 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s42521-023-00077-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:digfin:v:5:y:2023:i:1:d:10.1007_s42521-023-00077-x
Ordering information: This journal article can be ordered from
https://www.springer.com/finance/journal/42521
DOI: 10.1007/s42521-023-00077-x
Access Statistics for this article
Digital Finance is currently edited by Wolfgang Karl Härdle, Steven Kou and Min Dai
More articles in Digital Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().