EconPapers    
Economics at your fingertips  
 

Dynamic and context-dependent stock price prediction using attention modules and news sentiment

Nicole Königstein ()
Additional contact information
Nicole Königstein: Impactvise AG

Digital Finance, 2023, vol. 5, issue 3, No 1, 449-481

Abstract: Abstract The growth of machine-readable data in finance, such as alternative data, requires new modeling techniques that can handle non-stationary and non-parametric data. Due to the underlying causal dependence and the size and complexity of the data, we propose a new modeling approach for financial time series data, the $$\alpha _{t}$$ α t -RIM (recurrent independent mechanism). This architecture makes use of key–value attention to integrate top-down and bottom-up information in a context-dependent and dynamic way. To model the data in such a dynamic manner, the $$\alpha _{t}$$ α t -RIM utilizes an exponentially smoothed recurrent neural network, which can model non-stationary times series data, combined with a modular and independent recurrent structure. We apply our approach to the closing prices of three selected stocks of the S &P 500 universe as well as their news sentiment score. The results suggest that the $$\alpha _{t}$$ α t -RIM is capable of reflecting the causal structure between stock prices and news sentiment, as well as the seasonality and trends. Consequently, this modeling approach markedly improves the generalization performance, that is, the prediction of unseen data, and outperforms state-of-the-art networks, such as long–short-term memory models.

Keywords: Financial time series; Deep learning; Recurrent neural network; Attention (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42521-023-00089-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:digfin:v:5:y:2023:i:3:d:10.1007_s42521-023-00089-7

Ordering information: This journal article can be ordered from
https://www.springer.com/finance/journal/42521

DOI: 10.1007/s42521-023-00089-7

Access Statistics for this article

Digital Finance is currently edited by Wolfgang Karl Härdle, Steven Kou and Min Dai

More articles in Digital Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:digfin:v:5:y:2023:i:3:d:10.1007_s42521-023-00089-7