Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0)
Abhyuday Jagannatha,
Feifan Liu,
Weisong Liu and
Hong Yu ()
Additional contact information
Abhyuday Jagannatha: University of Massachusetts
Feifan Liu: University of Massachusetts Medical School
Weisong Liu: University of Massachusetts
Hong Yu: University of Massachusetts
Drug Safety, 2019, vol. 42, issue 1, No 11, 99-111
Abstract:
Abstract Introduction This work describes the Medication and Adverse Drug Events from Electronic Health Records (MADE 1.0) corpus and provides an overview of the MADE 1.0 2018 challenge for extracting medication, indication, and adverse drug events (ADEs) from electronic health record (EHR) notes. Objective The goal of MADE is to provide a set of common evaluation tasks to assess the state of the art for natural language processing (NLP) systems applied to EHRs supporting drug safety surveillance and pharmacovigilance. We also provide benchmarks on the MADE dataset using the system submissions received in the MADE 2018 challenge. Methods The MADE 1.0 challenge has released an expert-annotated cohort of medication and ADE information comprising 1089 fully de-identified longitudinal EHR notes from 21 randomly selected patients with cancer at the University of Massachusetts Memorial Hospital. Using this cohort as a benchmark, the MADE 1.0 challenge designed three shared NLP tasks. The named entity recognition (NER) task identifies medications and their attributes (dosage, route, duration, and frequency), indications, ADEs, and severity. The relation identification (RI) task identifies relations between the named entities: medication-indication, medication-ADE, and attribute relations. The third shared task (NER-RI) evaluates NLP models that perform the NER and RI tasks jointly. In total, 11 teams from four countries participated in at least one of the three shared tasks, and 41 system submissions were received in total. Results The best systems F1 scores for NER, RI, and NER-RI were 0.82, 0.86, and 0.61, respectively. Ensemble classifiers using the team submissions improved the performance further, with an F1 score of 0.85, 0.87, and 0.66 for the three tasks, respectively. Conclusion MADE results show that recent progress in NLP has led to remarkable improvements in NER and RI tasks for the clinical domain. However, some room for improvement remains, particularly in the NER-RI task.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s40264-018-0762-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:drugsa:v:42:y:2019:i:1:d:10.1007_s40264-018-0762-z
Ordering information: This journal article can be ordered from
http://www.springer.com/adis/journal/40264
DOI: 10.1007/s40264-018-0762-z
Access Statistics for this article
Drug Safety is currently edited by Nitin Joshi
More articles in Drug Safety from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().