EconPapers    
Economics at your fingertips  
 

Evasive Path Planning Under Surveillance Uncertainty

Marc Aurèle Gilles () and Alexander Vladimirsky ()
Additional contact information
Marc Aurèle Gilles: Cornell University
Alexander Vladimirsky: Cornell University

Dynamic Games and Applications, 2020, vol. 10, issue 2, No 4, 416 pages

Abstract: Abstract The classical setting of optimal control theory assumes full knowledge of the process dynamics and the costs associated with every control strategy. The problem becomes much harder if the controller only knows a finite set of possible running cost functions, but has no way of checking which of these running costs is actually in place. In this paper we address this challenge for a class of evasive path planning problems on a continuous domain, in which an evader needs to reach a target while minimizing his exposure to an enemy observer, who is in turn selecting from a finite set of known surveillance plans. Our key assumption is that both the evader and the observer need to commit to their (possibly probabilistic) strategies in advance and cannot immediately change their actions based on any newly discovered information about the opponent’s current position. We consider two types of evader behavior: in the first one, a completely risk-averse evader seeks a trajectory minimizing his worst-case cumulative observability, and in the second, the evader is concerned with minimizing the average-case cumulative observability. The latter version is naturally interpreted as a semi-infinite strategic game, and we provide an efficient method for approximating its Nash equilibrium. The proposed approach draws on methods from game theory, convex optimization, optimal control, and multiobjective dynamic programming. We illustrate our algorithm using numerical examples and discuss the computational complexity, including for the generalized version with multiple evaders.

Keywords: Path planning; Semi-infinite games; Nash equilibrium; Surveillance evasion; Convex optimization; Hamilton–Jacobi PDEs; 49N75; 49N90; 49K35; 91A05; 90C29 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13235-019-00327-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:dyngam:v:10:y:2020:i:2:d:10.1007_s13235-019-00327-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/13235

DOI: 10.1007/s13235-019-00327-x

Access Statistics for this article

Dynamic Games and Applications is currently edited by Georges Zaccour

More articles in Dynamic Games and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:dyngam:v:10:y:2020:i:2:d:10.1007_s13235-019-00327-x