The Box-Cox Transformation-of-Variables in Regression
Minbo Kim and
Carter Hill
Empirical Economics, 1993, vol. 18, issue 2, 307-19
Abstract:
The application of the Box-Cox transformation to the dependent and independent variables is discussed. Maximum likelihood and iterative GLS estimators are used and bootstrapping is carried out to compare the bootstrap sample variability with the finite sample variability (RMSE) and improve RMSE estimation. The biases of parameter estimators were shown to be substantial in small samples. The standard errors obtained from the Hessian matrix were a poor measure of the finite sample variability. The "t"-ratios of the linear parameter estimators may not be normally distributed in small samples.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (2)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:empeco:v:18:y:1993:i:2:p:307-19
Ordering information: This journal article can be ordered from
http://www.springer. ... rics/journal/181/PS2
Access Statistics for this article
Empirical Economics is currently edited by Robert M. Kunst, Arthur H.O. van Soest, Bertrand Candelon, Subal C. Kumbhakar and Joakim Westerlund
More articles in Empirical Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().