Robust estimation of the simplified multivariate GARCH model
Farhat Iqbal ()
Empirical Economics, 2013, vol. 44, issue 3, 1353-1372
Abstract:
In this paper, robust M-estimation of multivariate GARCH models are considered. The simplified GARCH model is chosen that involves the estimation of only univariate GARCH models, and hence easy to estimate, and does not put additional constraints on the model. The results of Monte Carlo simulations showed that accurate estimates of conditional correlations can be obtained using these robust estimators when the errors are heavy-tailed. We also investigate the forecasting performance of the class of robust estimators in predicting value-at-risk using various evaluation measures and collect empirical evidences of the better predictive potential of estimators such as LAD and B-estimator over the widely-used quasi-maximum likelihood estimator for the estimation and prediction of multivariate GARCH models. Applications to real data sets are also presented. Copyright Springer-Verlag 2013
Keywords: Multivariate GARCH; QMLE; M-estimator; Value-at-risk; SGARCH; C5 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00181-012-0588-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:empeco:v:44:y:2013:i:3:p:1353-1372
Ordering information: This journal article can be ordered from
http://www.springer. ... rics/journal/181/PS2
DOI: 10.1007/s00181-012-0588-y
Access Statistics for this article
Empirical Economics is currently edited by Robert M. Kunst, Arthur H.O. van Soest, Bertrand Candelon, Subal C. Kumbhakar and Joakim Westerlund
More articles in Empirical Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().