EconPapers    
Economics at your fingertips  
 

Improving the prediction of ranking data

Marco Palma ()

Empirical Economics, 2017, vol. 53, issue 4, No 14, 1710 pages

Abstract: Abstract By using the same number of alternatives for every respondent, all ranking elicitation methods in the literature including full, partial, and best–worst rankings assume respondents know and are able to rank the same number of alternatives. A simple survey elicitation mechanism allowing for individual heterogeneity in the number of rankings for ranked-ordered data is proposed. Using the proposed ranking mechanism as a data augmentation tool yields higher prediction of ranking choices compared to conventional rankings and best–worst methods. The results provide robust evidence of differences in error variance scale and the structure of the underlying utility preferences across ranking stages, including best–worst rankings. The highest predictive power was achieved with the proposed ranking method using only the best ranked alternative. Including any additional rankings other than the best alternative reduces predictive power. Nevertheless, if more than one ranking is used to model preferences, then better predictions are achieved by using the top two best ranked alternatives as supposed to the exploded best–worst rankings. The results stand as a warning about equating ranking choices to true underlying utility preferences across different ranking elicitation stages or mechanisms without properly testing for symmetry and stability of preferences.

Keywords: Best–worst; Error variance; Random parameters; Scale parameter; Stability of preferences (search for similar items in EconPapers)
JEL-codes: C83 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s00181-016-1169-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:empeco:v:53:y:2017:i:4:d:10.1007_s00181-016-1169-2

Ordering information: This journal article can be ordered from
http://www.springer. ... rics/journal/181/PS2

DOI: 10.1007/s00181-016-1169-2

Access Statistics for this article

Empirical Economics is currently edited by Robert M. Kunst, Arthur H.O. van Soest, Bertrand Candelon, Subal C. Kumbhakar and Joakim Westerlund

More articles in Empirical Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:spr:empeco:v:53:y:2017:i:4:d:10.1007_s00181-016-1169-2