A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India)
C. Thivya (),
S. Chidambaram (),
C. Singaraja (),
R. Thilagavathi (),
M. Prasanna (),
P. Anandhan () and
I. Jainab ()
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2013, vol. 15, issue 5, 1365-1387
Abstract:
The groundwater occurs in hard rock aquifers, which is more predominant in India. It is more common in the southern peninsula especially Tamil Nadu. Madurai district is located in the central part of Tamil Nadu, underlain predominantly by crystalline formations and alluvium along the river course. The study area being a hard rock terrain, the groundwater is stored in cracks, fissures, joints, etc., and hence the quantity is lesser. The frequent failure of monsoon also aggravates the scarcity of this commodity. In this scenario, the quality and hydrogeochemistry of the available quantum of water plays a significant role for the determination of its utility and in tracing out the hydrogeochemical evaluation. Fifty-four groundwater samples were collected representing the entire study area. The samples collected were representative covering all the major litho units of the study area (charnockite -21, fissile hornblende biotite gneiss-21, granite-4, quartzite-3, and 5 samples from flood plain alluvium). The samples collected were analyzed for major ions and were classified for different purposes like drinking, domestic, and agriculture, with respect to lithology. The comparison of the groundwater samples with the drinking water standards shows that few samples fall above the drinking water limit irrespective of lithology. The samples were classified with sodium absorption ratio, electrical conductivity, residual sodium carbonate, sodium percentage (Na %), Kellys ratio, and magnesium hazard, and permeability index for irrigation purpose found that most of the samples were suitable for irrigation purpose irrespective of lithology. Total hardness and corrosivity index were studied for the domestic purpose and found that the samples of the granitic terrain are safe. Apart from this, index of base exchange, Schoellers water type, Stuyfzands classification were attempted along with Gibbs plot to determine the major geochemical activity of the region. The study reveals that the samples collected from granitic and quartzitic terrains are comparatively better for the domestic and drinking purpose due to the presence of resistant minerals to weathering. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Groundwater quality; Domestic and drinking; Lithology; South India (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10668-013-9439-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:15:y:2013:i:5:p:1365-1387
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-013-9439-z
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().