EconPapers    
Economics at your fingertips  
 

Technical effici ency and agricultural sustainability–technology gap of maize producers in Fars province of Iran

Farnaz Pourzand () and Mohammad Bakhshoodeh

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2014, vol. 16, issue 3, 688 pages

Abstract: Fars has a special place in Iran in terms of natural resources and diverse climate aiming this province to increase production of major crops such as corns. In light of increasing domestic production and preventing yield loss of maize, many farmers utilize high quantities of pesticides, chemical fertilizers and over-extract groundwater without considering immediate and long-term consequences of such operations on environment. The main purpose of this study is to investigate technical efficiency and sustainability–technology gap ratio (STGR) of maize producers by agricultural sustainability in Fars province in Iran. Technical efficiency is considered as a key element among the triple elements of sustainable development (economic, social and ecological). Applying model of agricultural sustainability and compromise programming method, regions were classified into three groups (sustainable, relatively sustainable and unsustainable), and data were collected interviewing a total of 300 farmers in 2008–2009 from Kazerun, Firouzabad and Marvdasht chosen randomly and systematically as representatives of these three groups. Technical efficiencies and STGRs were calculated for the regions applying stochastic production frontier, regional stochastic frontier functions and the metafrontier. The results indicate that assuming the same technology between the fields (traditional methods) leads to overestimation of technical efficiency. Mean STGRs in Marvdasht, Firouzabad and Kazerun were found to be 59.3, 71.1 and 68.9, respectively. This suggests that technical efficiency and STGR of relatively sustainable regions are higher than those of the unsustainable regions. Thus, farmers in these areas can reduce gap between technology and agricultural sustainability levels via achieving metatechnology that is compatible with sustainable agriculture. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Stochastic metafrontier production function; Technical efficiency; Agricultural sustainability–technological gap; Maize; Iran (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10668-013-9501-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:16:y:2014:i:3:p:671-688

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-013-9501-x

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:16:y:2014:i:3:p:671-688