EconPapers    
Economics at your fingertips  
 

Identification of elite native plants species for phytoaccumulation and remediation of major contaminants in uranium tailing ponds and its affected area

K. Laxman Singh (), G. Sudhakar, S. Swaminathan and C. Muralidhar Rao

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2015, vol. 17, issue 1, 57-81

Abstract: Uranium mill tailings are the crushed rock residues of the uranium extraction process from ores. The tailings effluent and tailings solids from the mill are discharged as slurry to a waste retention pond, called tailing pond. Natural radionuclides’ and trace metals are present in mine tailing/soil in varying concentrations, and some of these are found in elevated concentrations in uranium waste tailings. Uranium mine tailing ponds at Jaduguda and Turamdih receive waste from ores mined at the six mine stations at Jharkhand state, India. A study was undertaken to evaluate the potential of native plant species for the phytoremediation of these site. Three sampling stations were selected at Jaduguda (TP1, TP2, TP3) and Turamdih and at the downstream of effluent treatment plant. pH, electrical conductivity, metals (12-Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Pb) and radionuclides’ (3-Co, Sr and U) were analyzed using inductively coupled plasma mass spectrophotometry. From the analysis, four elements—Al, Mn, Fe and U—were found to be much higher in concentration in water with range (mg/kg) of 0.02–2.38, 0.30–31.67, 0.00–0.75 and 0.03–5.50, respectively, and 10 elements—of U, Mn, Al, V, Fe, Ni, Cu, Zn, Co and Se—were found to be higher in concentrations in soils with range (mg/kg) of 22–99, 1,072–8,065, 14,053–21,213, 66–139, 15,163–44,640, 149–240, 135–350, 89–191, 34–140 and 12–122, respectively. Among them, U and Mn were identified as predominant contaminants. Out of all the native plants, 21 species were screened for phytoaccumulation and transfer factor study. P. digitalis (for Al, V, Ni and Co), E. ferox (for Mn and Cu), A. indica (for Fe), B. vitisidae (for Zn), P. hydropiper (for Se) and S. spantanium (for U) were identified for hyper-accumulation, and A. indica (for Al, Co, Se and U), C. bunplandianus (for Mn, Fe, Ni and Cu), E. ferox (for V) and C. procera (for Zn) were listed for non-accumulation of respective contaminant. Besides this, taking consideration of the parameters such as shallow-rooted plant species, easy to adapt, growth, harvest and biomass production and simultaneous accumulation of multiple contaminants, following plants were found to be candidate species for phytoremediation of tailing ponds of uranium mines: For hyper-accumulation: P. vittata (can accumulate Al, V, Ni, Co, Se and U simultaneously) followed by P. digitalis, C. compressus and S. spantanium. For non-accumulation: C. bunplandianus (can non-accumulate Al, Mn, Fe, Ni, Co, Cu, Zn, Se and U simultaneously) followed by B. moneri, C. procera and A. indica. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Water contaminants; Uranium tailing; Metal contamination; Native plants; Transfer factor; Phytoremediation (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10668-014-9536-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:17:y:2015:i:1:p:57-81

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-014-9536-7

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:17:y:2015:i:1:p:57-81