EconPapers    
Economics at your fingertips  
 

Climate change and modeling of an unconfined aquifer: the Triffa plain, Morocco

Mimoun Boughriba () and Abdelhakim Jilali ()
Additional contact information
Mimoun Boughriba: University Mohammed I
Abdelhakim Jilali: University Mohammed I

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2018, vol. 20, issue 5, No 5, 2009-2026

Abstract: Abstract The Triffa plain covering about 307 km2 is located in the semiarid region of northeastern Morocco. The cover consists of Quaternary and Mio-Pliocene formations, including alluvial material, silt, sandstone, limestone, clay, and marl, underlain by a sequence of Jurassic carbonates and clastics. Two principal aquifers occur in this region: (1) An unconfined aquifer hosted by the Quaternary formations, which opens up on the coastal plain of Saïdia, giving rise to the Aïn Chebbak and Aïn Zebda springs; and (2) a confined aquifer hosted by the underlying Liassic (Jurassic) formations, composed of limestone and dolostone. In this paper, we present a conceptual hydrogeological model for the Triffa aquifer, which opens laterally into the Saïdia aquifer, based on borehole data, bedrock geology, hydrodynamic parameters, piezometric maps, and time series groundwater level and precipitation data, obtained from several meteorological stations and pumping wells. These comprehensive data were incorporated in the Geographic Information System platform and processed using groundwater modeling software, with the development of the numerical model and its limitations discussed in detail in the present work. Subsequently, we evaluated the impact of climate change on the Triffa aquifer, assuming three different climate scenarios developed by the Intergovernmental Panel on Climate Change. These were the B1—low, A1B—mean, and A1F1—extreme scenarios, which we modeled by simulating a decrease in the recharge in all of the study area up to year 2099 that would correspond to 9, 19, and 47%, respectively. The calibration of the model in steady and transient states produced a good agreement between the observed and simulated heads. The simulation of the impact of climate change on groundwater by a decrease in the recharge highlights the groundwater drawdown occurring in this region. This work can significantly help the authorities in the sustainable management and exploitation of local groundwater.

Keywords: Numerical modeling; MODFLOW; Groundwater; Climate change; Morocco (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10668-017-9974-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:20:y:2018:i:5:d:10.1007_s10668-017-9974-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-017-9974-0

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:20:y:2018:i:5:d:10.1007_s10668-017-9974-0