Thermodynamic, kinetic and equilibrium isotherm studies of As(V) adsorption by Fe(III)-impregnated bentonite
Shima Barakan (),
Valeh Aghazadeh (),
Abdoullah Samiee Beyragh () and
Sahar Mohammadi ()
Additional contact information
Shima Barakan: Sahand University of Technology
Valeh Aghazadeh: Sahand University of Technology
Abdoullah Samiee Beyragh: Iranian Academic Center for Education, Culture and Research (ACECR)
Sahar Mohammadi: Sahand University of Technology
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2020, vol. 22, issue 6, No 16, 5273-5295
Abstract:
Abstract Arsenic removal has received much attention all over the world because of its toxicity and carcinogenicity. In the current research, the adsorption behavior of As(V) from aqueous solution onto Fe(III)-impregnated bentonite (Fe-Bent) was examined. Adsorption experiment results showed that the adsorption capacity of initial bentonite clay (Bent) was increased by Fe(III)-impregnation method. In Fe-Bent, the mononuclear Fe(III) cations, small oligomeric cluster and bulky FexOy particles were made such active sites identified by UV–Vis spectroscopy. X-ray diffraction results showed that Fe(III) species presented mainly in both crystalline and amorphous forms on the external surface of Fe-Bent. In an experimental study, the effect of different parameters such as contact times, arsenic concentrations, adsorbent dosages, pH and temperature conditions was investigated. Fe-Bent sample represented the maximum adsorption capacity of 10.06 mg L−1 to remove 5–20 mg L−1 of As(V) at pH = 6 and ambient temperature. In this experiment, the residual As(V) concentration decreased to less than 0.01 mg/L with the adsorption efficiency of 99% (i.e., below the limit of the WHO). The two- and three-parameter isotherm models revealed the best fit to the Freundlich, Sips, Toth, Temkin and Langmuir models, respectively. The isotherm models indicated the strong adsorption between arsenic and Fe-Bent. The adsorption kinetics was also considered by first-order, second-order and Elovich rate equations. It was noticed that the Fe-Bent adsorption followed the external surface reaction such as ligand exchange and surface complexation. The thermodynamics studies exposed that the process was spontaneous and endothermic for Fe-Bent.
Keywords: Adsorption; Impregnated bentonite; Arsenic; Thermodynamics; Kinetics; Isotherm (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-019-00424-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00424-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-019-00424-2
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().