EconPapers    
Economics at your fingertips  
 

Biodegradation of low-density polyethylene (LDPE) using the mixed culture of Aspergillus carbonarius and A. fumigates

Manal T. El-Sayed (), Gamal H. Rabie and Esraa A. Hamed
Additional contact information
Manal T. El-Sayed: Zagazig University
Gamal H. Rabie: Zagazig University
Esraa A. Hamed: Zagazig University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 10, No 15, 14556-14584

Abstract: Abstract Low-density polyethylene (LDPE) possesses various applications in several industries owing to its durability, low-cost, and many mechano-thermal properties. Unfortunately, LDPE waste creates an environmental threat. The level of biodegradation of black LDPE sheets with fungi isolated from different landfills sites in Sharqiyah Governorate, Egypt, was evaluated. LDPE sheets, the only source of carbon, along with minimal salt medium were incubated on a rotary shaker at 30 °C and 120 rpm for 16 weeks. Aspergillus carbonarius MH 856457.1 and A. fumigatus MF 276893 confirmed to be good candidates for LDPE biodegradation. A mixed culture of two strains showed the excellent weight loss% of sheets as compared to single isolate. Further efforts to improve the degrading capacity through physical and chemical treatments were performed. The biodegradation was significantly stimulated by 39.1% (thermal treatment), 17.76% (HNO3 treatment), and 5.79% (Gamma-irradiation treatment). Laccases and manganese peroxidases activities were assayed. LDPE biodegradation was analyzed by scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and gas chromatography–mass spectrometry (GC–MS). FTIR spectra showed the appearance of new functional groups assigned to hydrocarbon biodegradation and confirmed the role of manganese peroxidase in process. The changes in the FTIR spectra of the mixed culture biomass before and after the biodegradation (Δ73 cm−1) and the surface changes in the biodegraded LDPE (as indicated from SEM) confirmed the depolymerization of LDPE. From GC–MS analysis, the plasticizers bis(2-ethylhexyl) phthalate, Diisssctyl phthalate, 1,2-benzenedicarboxylic acid diisooctyl ester, and tributyl acetylcitrate completely biodegraded. Moreover, several antioxidants, antimicrobial, and anticancer compounds, and methyl esters of fatty acids were produced.

Keywords: Biodegradation; Low density polyethylene; Enzymes; FTIR; GC–MS; Environment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01258-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01258-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-021-01258-7

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01258-7