Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM
Sangita Dey,
U. K. Shukla,
P. Mehrishi and
R. K. Mall ()
Additional contact information
Sangita Dey: Banaras Hindu University
U. K. Shukla: Banaras Hindu University
P. Mehrishi: Banaras Hindu University
R. K. Mall: Banaras Hindu University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 12, No 18, 17558-17589
Abstract:
Abstract An approach has been made in this study to delineate the groundwater potential zones of the Varuna river basin, Uttar Pradesh, India, using the analytical hierarchy process (AHP) and multi-influence factor (MIF) techniques. The present groundwater estimation exhibits an increase in the draft (10%) due to expansion in population, agricultural extent, and industrialization, which ultimately causes water table depletion. This backdrop justifies the need for this particular analysis in the multilayer aquifers of the central alluvial zone. The shallow aquifers are silty and unconfined, whereas the deeper aquifers are coarse, sandy-gravelly, and semi-confined. Basement faults and highs often control the thickness of aquifers in the subsurface. The study considered an integrated approach of AHP and MIF methods with remote sensing and GIS approaches. Various themes (land use/land cover (LULC), soil type, geology, elevation, slope, rainfall, normalized difference vegetation index (NDVI), drainage density, recharge rate, groundwater depth) determined by considering different conditioning factors and eventually employed for computation of groundwater potential index (GWPI) and classified for identifying the groundwater potential zones (GWPZ). Two methods applied to capture the results in a more tangible form as the AHP model works on building a pair-wise comparison matrix to relate conditioning factors to each other. Still, the MIF model considered interrelations among the conditioning factors. The GWPZ of the study area generates with overlay weighted sum method by integrating all thematic layers. The resulting groundwater potential index map is categorized into three groundwater potential zones, namely good, moderate, and poor. Ultimately, by constructing the receiver operating characteristic (ROC) curves for both the groundwater potential models, determine the efficiency of performances and the GWPZ map validated using yield data collected from wells scattered over the study area. The findings of the present paper have important implications for ensuring exploration and sustainability groundwater plans in that particular area.
Keywords: Groundwater potential zones (GWPZ); Groundwater management; Analytical hierarchy process (AHP); Multi-influence factor (MIF); Satellite imagery (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01400-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01400-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-021-01400-5
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().