The impact of meteorological conditions on Air Quality Index under different urbanization gradients: a case from Taipei
Zhipeng Zhu (),
Yuxuan Qiao (),
Qunyue Liu (),
Conghua Lin (),
Emily Dang (),
Weicong Fu (),
Guangyu Wang () and
Jianwen Dong ()
Additional contact information
Zhipeng Zhu: Fujian University of Technology
Yuxuan Qiao: Fujian Agriculture and Forestry University
Qunyue Liu: Fujian University of Technology
Conghua Lin: Fujian University of Technology
Emily Dang: The University of British Columbia
Weicong Fu: Fujian Agriculture and Forestry University
Guangyu Wang: The University of British Columbia
Jianwen Dong: Fujian Agriculture and Forestry University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 3, No 50, 3994-4010
Abstract:
Abstract With the concentration of air pollutants increasing, air pollution has many hazards to the human body. Meteorology is the main factor affecting the diffusion of air pollutants. Studying the dynamic connection between them can provide references for the construction of urban air environment. In this research study, data from meteorological factors (temperature, humidity, wind speed, and rainfall) and air pollutants (PM2.5, PM10, SO2, CO, O3, and NO2) were collected in 2018 from the areas of Zhongshan, Shilin, and Yangmingshan of Taipei City. The Granger causality test was used to analyze the intrinsic dynamic relationship between meteorological factors and Air Quality Index (AQI). The results showed that: (1) the overall level of AQI in Taipei was good, and the main pollutant that contributed to AQI was PM2.5. (2) The range of AQI values in the three study areas were Zhongshan (downtown) > Shilin (suburbs) > Yangmingshan (outskirts). (3) In downtown Zhongshan, temperature and humidity were the Granger cause of AQI; in the suburbs of Shilin, humidity, and wind speed were the Granger cause of AQI; in the outskirts of Yangmingshan, humidity was the Granger cause of AQI. (4) The air pollution of Taipei was found to be mainly a process of self-accumulation and self-diffusion. The self-accumulation effect of AQI was more than 70%. Once the diffusion condition of air pollution deteriorated, it formed air pollution. (5) Wind speed was the main meteorological factor affecting AQI in downtown Zhongshan and the suburbs of Shilin, while the AQI in the outskirts of Yangmingshan was mainly affected by humidity. In the construction of urban air environment, the emission of air pollutants should be controlled and reduced, the construction of urban ventilation system should be strengthened, and the layout of urban space should be rationally planned to create a better urban air environment.
Keywords: Air pollution; Granger causality test; Meteorology; Urban planning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10668-020-00753-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00753-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-020-00753-7
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().