Improvement in ambient-air-quality reduced temperature during the COVID-19 lockdown period in India
Subodh Chandra Pal (),
Indrajit Chowdhuri (),
Asish Saha (),
Rabin Chakrabortty (),
Paramita Roy (),
Manoranjan Ghosh () and
Manisa Shit ()
Additional contact information
Subodh Chandra Pal: The University of Burdwan
Indrajit Chowdhuri: The University of Burdwan
Asish Saha: The University of Burdwan
Rabin Chakrabortty: The University of Burdwan
Paramita Roy: The University of Burdwan
Manoranjan Ghosh: Indian Institute of Technology Kharagpur
Manisa Shit: Raiganj University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 6, No 76, 9608 pages
Abstract:
Abstract The COVID-19 pandemic forced India as a whole to lockdown from 24 March 2020 to 14 April 2020 (first phase), extended to 3 May 2020 (second phase) and further extended to 17 May 2020 (third phase) and 31 May 2020 (fourth phase) with only some limited relaxation in non-hot spot areas. This lockdown has strictly controlled human activities in the entire India. Although this long lockdown has had a serious impact on the social and economic fronts, it has many positive impacts on environment. During this lockdown phase, a drastic fall in emissions of major pollutants has been observed throughout all the parts of India. Therefore, in this research study we have tried to establish a relationship among the fall in emission of pollutants and their impact on reducing regional temperature. This analysis was tested through the application of Mann–Kendall and Sen’s slope statistical index with air quality index and temperature data for several stations across the country, during the lockdown period. After the analysis, it has been observed that daily emissions of pollutants (PM10, PM2.5, CO, NO2, SO2 and NH3) decreased by − 1– − 2%, allowing to reduce the average daily temperature by 0.3 °C compared with the year of 2019. Moreover, this lockdown period reduces overall emissions of pollutants by − 51– − 72% on an average and hence decreases the average monthly temperature by 2 °C. The same findings have been found in the four megacities in India, i.e., Delhi, Kolkata, Mumbai and Chennai; the rate of temperature fall in the aforementioned megacities is close to 3 °C, 2.5 °C, 2 °C and 2 °C, respectively. It is a clear indicator that a major change occurs in air quality, and as a result it reduced lower atmospheric temperature due to the effect of lockdown. It is also a clear indicator that a major change in air quality and favorable temperature can be expected if the strict implementations of several pollution management measures have been implemented by the concern authority in the coming years.
Keywords: COVID-19; Air quality index; Air pollutant; Climate (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-020-01034-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:6:d:10.1007_s10668-020-01034-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-020-01034-z
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().