EconPapers    
Economics at your fingertips  
 

Spatial distribution and landscape impact analysis of quarries and waste dumpsites

George Mitri (), Georgy Nasrallah and Manal Nader
Additional contact information
George Mitri: University of Balamand
Georgy Nasrallah: University of Balamand
Manal Nader: University of Balamand

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 8, No 56, 12302-12325

Abstract: Abstract This work aimed to develop an assessment tool that can help local officials and the public understanding the main effects surrounding location of quarrying activities and improper disposal of CDW. The specific objectives were to (1) assess the visual impact of quarries and CDW dumpsites at the landscape level and (2) investigate the effect of land conversion to quarries and CDW dumpsites on water runoff volume. The methodology of work involved digitization of individual quarries and CDW dumpsites using very high-resolution satellite imagery. The volume of exploited material was estimated with the use of a Digital Elevation Model. Geographic Object-Based Image Analysis was employed to assess the state of soil cover on identified sites. Visual impact maps were developed using Geographic Information System analysis. The Natural Resource Conservation Service-Curve Number model was adopted to estimate changes in volume of annual surface water runoff. The assessment resulted in mapping individual quarries (i.e., 1,425 quarries over an area of 61,723,800 m2) and CDW dumpsites (i.e., 219 dumpsites over an area of 5,012,100 m2) showing (1) low to complete absence of vegetation recovery on identified sites, (2) improper location of quarries and large extent of visually polluted landscape and (3) increase in surface water runoff. This work demonstrated the ability of using an operational tool to spatially characterize quarries and CDW dumpsites and their impacts on the landscape in the absence of extensive site-specific datasets. The transferability and replicability of this tool count on systematic use of the investigated geospatial techniques.

Keywords: Quarries; Construction and demolition waste; Visual pollution; Runoff volume; Sustainable land use; Spatial analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-020-01169-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01169-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-020-01169-z

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01169-z