Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region
Hashem Dadashpoor () and
Hossein Panahi ()
Additional contact information
Hashem Dadashpoor: Tarbiat Modares University
Hossein Panahi: Tarbiat Modares University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2021, vol. 23, issue 9, No 45, 13628-13649
Abstract:
Abstract Spatial simulation of land-use change scenarios in metropolitan areas is essential for analyzing both the causes and consequences of various future scenarios and is also valuable for land-use planning and management. However, current simulation models primarily focus on spatial and rarely on quantitative driving factors. This article aims to simulate future scenarios of land-use changes in the Tehran metropolitan region (TMR) by combining different models to fill this gap. Thus, in the first step, land-use changes were analyzed in the period 1985, 2000, and 2015. Then, by identifying the impact of driving factors and land-use transition potentials with Logistic regression (LR), land-use changes were allocated using the Cellular Automata (CA) method. Finally, with the validation of the model, four scenarios of the current trend(CT), socioeconomic growth(SEG), ecological-oriented(EO), and integrated development(ID) were suggested with the combination of the System Dynamic (SD) model. The results show that the trend of land-use changes in TMR has led to the destruction of grassland, agricultural, and uncultivated lands and the continuation of this trend will increase the damage of built-up areas on valuable natural and ecological resources. In this way, proximity to roads, distance from built-up areas, and natural factors had the greatest impact on changes. Based on future scenarios in 2030, the change in the SEG-scenario shows a rapid increase in built-up areas (2858km2) and encroachment on agricultural lands (2171km2). In the EO-scenario, destruction of grassland and agricultural lands and the growth of built-up areas will be limited, while CT-scenario leads to the high growth of built-up areas along with destructive impacts on natural and open spaces. In the ID-scenario, the built-up areas and grasslands will increase to 2808km2 and 7438km2, respectively. Accordingly, policy-makers can use simulation of different scenarios to mitigate probable consequences of land-use changes in the metropolitan regions.
Keywords: Land-use changes; Spatial simulation; Socioeconomic; Climate changes; Integrated development; Trend scenarios; System dynamics; Metropolitan regions (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01231-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:23:y:2021:i:9:d:10.1007_s10668-021-01231-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-021-01231-4
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().