Predicting climate change and its impact on future occurrences of vector-borne diseases in West Bengal, India
Jayanta Mondal (),
Arijit Das () and
Rumki Khatun ()
Additional contact information
Jayanta Mondal: University of Gour Banga
Arijit Das: University of Gour Banga
Rumki Khatun: University of Gour Banga
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2022, vol. 24, issue 10, No 16, 11894 pages
Abstract:
Abstract Climate change is a concerning matter nowadays. It has a long-term effect on human health by spreading vector-borne diseases throughout the world, and West Bengal is not an exception. Vector-borne diseases are life-threatening risk for human; approximately 27,437 people have been infected (2016) every year by this giant killer in West Bengal of India. Temperature and rainfall, two important parameters, have directly influenced the vector-borne diseases. An association between vector-borne diseases and climatic conditions has been established by using geographically weighted regression (GWR) technique. GWR resulted overall r square value more than 0.523 in every case of diseases signifies that the climatic parameters (temperature and rainfall) and vector-borne diseases (Dengue, Malaria, Japanese Encephlities) are strongly correlated. The climatic parameters and positive cases of diseases were mapped out by using inverse distance weight (IDW) interpolation technique in this study. Artificial neural network (ANN) was performed to predict and forecast the climatic condition. The predicted findings have been validated by root mean square error (RMSE) (temperature: 0.301; rainfall: 0.380, i.e., acceptable). This study revealed an insight between climate variables and vector-borne cases in different districts of West Bengal to better understand the effects of climate variability on these diseases. A novel approach of this study is to forecast the spreading of vector-borne diseases for incoming day in West Bengal. After a critical analysis, temperature and rainfall were found to be potent factors for the development of vectors (Aedes Aegypti and Aedes albopictus), and based on this, the risk of vector-borne diseases has been predicted for upcoming years. Forecasted climatic parameters showed that almost all the districts of West Bengal would be reached in a climatic condition where there would be a chance of spreading of vector-borne diseases.
Keywords: Vector-borne diseases; Climatic parameters; Geographically weighted regression (GWR); Artificial neural network; Aedes Aegypti; Aedes Albopictus (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01920-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01920-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-021-01920-0
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().