EconPapers    
Economics at your fingertips  
 

Spatiotemporal variability of atmospheric CO2 concentration and controlling factors over sugarcane cultivation areas in southern Brazil

Luis Miguel Costa (), Gustavo André Santos (), Gislaine Costa Mendonça (), Luiz Fernando Favacho Morais Filho (), Kamila Cunha Meneses (), Glauco Rolim () and Newton La Scala ()
Additional contact information
Luis Miguel Costa: São Paulo State University
Gustavo André Santos: São Paulo State University
Gislaine Costa Mendonça: São Paulo State University
Luiz Fernando Favacho Morais Filho: São Paulo State University
Kamila Cunha Meneses: São Paulo State University
Glauco Rolim: São Paulo State University
Newton La Scala: São Paulo State University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2022, vol. 24, issue 4, No 52, 5694-5717

Abstract: Abstract With the advancement of remote sensing, it is now possible to identify and characterize greenhouse gas emissions under deferment land uses. Given the above, this study aimed to characterize the spatial–temporal variability and the main factors controlling the average atmospheric CO2 column (Xco2) in the macroregion of Ribeirão Preto (MRP), São Paulo, a significant sugarcane producer in Brazil. We obtained remote sensing data from January 2015 to December 2018. The variables used were Xco2 and sun-induced fluorescence of chlorophyll (SIF) by NASA's Orbiting Carbon Observatory-2 satellite (OCO-2), relative humidity (RH), global radiation (Qg), and the average temperature at 2 m (T2m) by the NASA-POWER platform, and leaf area index (LAI) and evapotranspiration by Penman–Monteith (ET) by MODIS sensor. We evaluated the data in trimester’s averages, where descriptive statistics, Pearson correlation and linear regression have been applied. The spatial distribution was made by the inverse distance weighted (IDW). The minimum (390.40 ± 0.41 ppm) and maximum (394.75 ± 0.34 ppm) mean of Xco2 was observed in the first quarter of 2015 and third quarter of 2017. The Xco2 obtained negative correlations with the SIF (−0.81), LAI (−0.81), RH (−0.74), ET (−0.84), and Qg (−0.51). Hotspots and coldspots of Xco2 tend to vary over the years. We conclude that the temporal variation of Xco2 above sugarcane areas in southern Brazil is well represented by a periodic function. Our results indicate photosynthesis and soil exposure after harvest are factors that could act as source and sink of CO2.

Keywords: Remote sensing; OCO-2; Carbon cycle; Climate-carbon feedbacks; Climate change (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01677-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01677-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-021-01677-6

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01677-6