A dynamic model for CO2 emissions induced by urban transportation during 2005–2030, a case study of Mashhad, Iran
Elham Heidari (),
Sona Bikdeli () and
Mohammad Reza Mansouri Daneshvar ()
Additional contact information
Elham Heidari: Research Institute of Shakhes Pajouh
Sona Bikdeli: Islamic Azad University
Mohammad Reza Mansouri Daneshvar: Research Institute of Shakhes Pajouh
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2023, vol. 25, issue 5, No 16, 4217-4236
Abstract:
Abstract The urban transportation sector in Iran handles high fuel consumption and CO2 emission. The research motivation was the investigation of urban transportation to estimate present and future emissions, find the comparative and quantitative outcomes, and cluster the influential variables. Hence, the main aim of the research was to provide a model framework to estimate the urban transpiration effects on the fuel consumption, CO2 emission, and air pollution concentration in Mashhad city (2005–2030) besides producing the mitigation measures on two national emission scenarios. A dynamic model was used based on the multiple intersections among variables and different subsystems to explain the vehicle-based fuel consumptions and induced equivalent-CO2 emissions. The results revealed an increasing trend for total emission (Gg) from 3791 Gg to 6226 Gg during 2005–2020, induced by urban transportation in Mashhad. The emissions equal to 7227 and 8118 Gg can be predicted for 2025 and 2030 under a national scenario, namely business as usual (BAU). Under shed of a different scenario, namely the sixth strategic development plan (SDP) of Iran, the emission can be prospected equal to 3520 and 2925 Gg for similar time (2025–2030) in Mashhad city. The comparative results revealed the mitigation measures for all model variables, e.g., 5,193 Gg reduction in transportation-induced CO2 emission, in 2030. The financial resource for mitigation target of CO2 emission in the Mashhad, until 2030, estimated as 415 million dollars, which is consistently half part of the financial budget of Mashhad municipality in 2020. Showing three variables of car inventory, fuel consumption, and CO2 emission, as the driving powers of the transportation-induced CO2 emissions, the proposed model suggested reconsidering alternative urban vehicle fleets to mitigate emissions by low-emission vehicles or public plans.
Keywords: Urban transportation; CO2 emission; Fuel consumption; Car inventory; Mashhad (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10668-022-02240-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02240-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-022-02240-7
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().