EconPapers    
Economics at your fingertips  
 

Hydrogels as water and nutrient reservoirs in agricultural soil: a comprehensive review of classification, performance, and economic advantages

Yudi Wu, Simeng Li () and Gang Chen
Additional contact information
Yudi Wu: FAMU-FSU College of Engineering
Simeng Li: California State Polytechnic University Pomona
Gang Chen: FAMU-FSU College of Engineering

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 10, No 4, 24653-24685

Abstract: Abstract In recent years, the development of various hydrogel types has aimed to address concerns regarding the inefficient utilization of water and nutrients in agricultural settings. However, conflicting outcomes have emerged regarding the effectiveness of hydrogel application in agriculture and its potential negative environmental consequences. Therefore, this comprehensive review seeks to evaluate the functionality of hydrogels as water and nutrient reservoirs, while identifying potential solutions to mitigate their environmental impacts based on previous research. By synthesizing data from prior studies, this review analyzes how the performance of hydrogels may be influenced by soil pH, ionic strength, and other solution chemistry factors in the environment. Notably, this review encompasses a comprehensive assessment of the impact of the environmental matrix on hydrogel performance, which fills an important knowledge gap and provides valuable insights for future research directions and practical applications in agricultural lands. Considering sustainability concerns associated with conventional hydrogel applications, it is recommended to explore biodegradable hydrogels derived from natural materials like cellulose. These biodegradable options offer minimal negative impacts on the environment. Although studies on the economic analysis of hydrogel usage are limited, they play a significant role in identifying current obstacles and promoting the adoption of biodegradable hydrogels. Conventional hydrogels have shown greater commercial benefits, but the increasing focus on environmental concerns has driven the development of nature-based hydrogels (e.g., starch) in recent years. However, the trade-off between the relatively high cost of biodegradable hydrogels and their low environmental impacts necessitates more pilot-scale experiments and political efforts in this field. In summary, this review demonstrates that incorporating sustainable hydrogels into soils can effectively improve water and nutrient retention, ultimately enhancing crop production. These findings suggest a promising and sustainable future for hydrogel applications in agriculture, while emphasizing the need for further research, pilot studies, and concerted efforts to strike a balance between economic viability and environmental considerations.

Keywords: Swelling ratio; Water retention; Nutrient management; Crop yield; Biodegradability; Sustainable agriculture (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-023-03706-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:10:d:10.1007_s10668-023-03706-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-023-03706-y

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:26:y:2024:i:10:d:10.1007_s10668-023-03706-y