EconPapers    
Economics at your fingertips  
 

Estimation of soil erosion and sediment yield concentrations in Dudhganga watershed of Kashmir Valley using RUSLE & SDR model

Wani Suhail Ahmad (), Saleha Jamal (), Mohd Taqi (), Hazem T. Abd El-Hamid () and Jigmat Norboo ()
Additional contact information
Wani Suhail Ahmad: University of Ladakh
Saleha Jamal: Aligarh Muslim University
Mohd Taqi: University of Ladakh
Hazem T. Abd El-Hamid: National Institute of Oceanography and Fisheries
Jigmat Norboo: University of Ladakh

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 1, No 8, 215-238

Abstract: Abstract A systematic method, incorporating the statistical RUSLE & SDR model, remote sensing and GIS, was used to estimate the annual soil loss and to display spatial distribution of potential erosion risk in Dudhganga watershed. The RUSLE was used in this study in GIS platform based on erosional factors. The spatial and temporal trend of soil erosion in the watershed was obtained by integrating input variables of RUSLE, such as R-factor, K-factor, LS-factor, C-factor and P-factor, into a grid-based GIS method. The estimated rainfall erosivity factor of the watershed ranges from 560.93 to 342.68 MJ mm ha−1 h−1 yr−1 from the year 2000–2020, respectively. The anticipated annual amount of soil loss in the watershed varies in between 6682.37 and 0 t ha−1 yr−1 for the year 2000. Similarly, the values corresponding to annual soil loss increased to 9879.912 t ha−1 yr−1 for the year 2010. Again, in the year 2020 it marked an increase where it recorded the soil loss values of 11,825.98 t ha−1 yr−1 with mean annual soil loss estimates to be 126.89 t ha−1 yr−1, respectively. The findings of the study revealed that the barren land is the main precarious source exposed to the process of soil erosion and has the upper hand in the rate of soil loss and sediment yield. The results of the study divulged that the most affected part of the watershed is the southwestern side where the majority of the area is occupied by barren land, and consequently, the high soil loss in the upper reaches of the watershed exhibits a close correlation to LS and K factor. It has been found in the study that anthropogenic nuisances like rapid deforestation and reckless unplanned urbanization are the principle drivers responsible for the land change systems in the study region. In the long haul, the outcome of these changes will eventually gear up the soil loss activities in the wetland catchments which in turn will lead to the generation of sediment yield and thereby give rise to sedimentation and siltation of waterbodies and, consequently, will affect their overall water holding capacity.

Keywords: Dudhganga watershed; RUSLE model; Kashmir Valley; Sediment yield; Soil erosion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-022-02705-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02705-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-022-02705-9

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02705-9