EconPapers    
Economics at your fingertips  
 

Prediction and modeling of water quality using deep neural networks

Marwa El-Shebli (), Yousef Sharrab () and Dimah Al-Fraihat ()
Additional contact information
Marwa El-Shebli: Oklahoma State University
Yousef Sharrab: Isra University
Dimah Al-Fraihat: Isra University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 5, No 19, 11397-11430

Abstract: Abstract Water pollution is one of the most challenging environmental issues. A powerful tool for measuring the suitability of water for drinking is required. The Water Quality Index (WQI) is a widely used parameter for the assessment of water quality through mathematical formulas. In this paper, a Deep Neural Network (DNN) model is developed to forecast WQI based on parameters selected for the dry and wet seasons throughout the year. Statistical modeling and unsupervised machine learning techniques are used. These modelings include the Principal Component Analysis/Factor Analysis (PCA/FA) which is used to interpret seasonal changes and the sources of springs under study. The other modeling technique utilized in this study is the Hierarchical Cluster Analysis (HCA). The results of this study reveal that the developed DNN model has achieved a high accuracy of ***. The goodness of fit of the developed model using R-Squared (R2) is 0.98 which is deemed high. The Mean Square Error metric is close to zero. Furthermore, the PCA/FA revealed five major parameters that impact water quality which together account for 92% of the total variance of water quality in summer and 96% in winter. Moreover, results show that the average of the WQI for all springs is of poor water quality at 46.75% during the dry season and medium water quality at 55.5% during the wet season.

Keywords: Deep neural networks; Water quality index; Water quality modeling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-023-03335-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03335-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-023-03335-5

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03335-5