EconPapers    
Economics at your fingertips  
 

Spatiotemporal distribution and dynamic evolution of grain productivity efficiency in the Yellow River Basin of China

Xiao Zhang (), Shuhui Sun () and Shunbo Yao ()
Additional contact information
Xiao Zhang: Northwest A&F University
Shuhui Sun: Northwest A&F University
Shunbo Yao: Northwest A&F University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 5, No 43, 12005-12030

Abstract: Abstract With contraction of agricultural resources and deterioration of ecological environment, grain production has faced a series challenges. Therefore, figuring out grain production efficiency (GPE) has significance to green and sustainable development of grain production. We constructed the global epsilon-based measure (EBM) model to estimate GPE of 100 prefecture-level cities in the Yellow River Basin (YRB) from 2000 to 2020. Further, we studied dynamic evolution of GPE in the YRB by utilizing the dynamic distribution method. The following results were revealed. First, aggregate level of GPE in the YRB was low, with an average value of 0.429, but showed a growing tendency in general. Second, the GPE in downstream was higher than that in upstream and midstream. The GPE in each region showed an increasing trend with fluctuation over time. Third, the GPE in the YRB tended to converge to a medium–high level. Compared with the high-efficiency cities, the distribution mobility was strong cities with high GPE possessed strong distribution mobility. By comparison, the low-efficiency cities had the phenomenon of “poverty trap”, the vicious circle of low-level GPE was difficult to break. Under the background of promoting agricultural green development comprehensively, constructing GPE model considering non-point source pollution has important and practical meaning for solving problem of current agricultural pollution and guaranteeing food security. Meanwhile, analysis of spatial distribution, trends of distribution, and evolution of GPE can also provide regional experience reference for government to ensure coordinated development of grain production and ecological environment.

Keywords: Global EBM model; Grain production efficiency; Kernel density; Markov chain analysis; The Yellow River Basin (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-023-03619-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03619-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-023-03619-w

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03619-w