Developing ensemble models for estimating sediment loads for different times scales
Majid Niazkar () and
Mohammad Zakwan ()
Additional contact information
Majid Niazkar: Free University of Bozen-Bolzano
Mohammad Zakwan: MANUU
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 6, No 77, 15557-15575
Abstract:
Abstract Sediment ratings supply an important input to the design of water resources projects. Nevertheless, the accuracy of sediment ratings has remained a matter of concern for hydrologists. The present article investigates both the aspect of improving the accuracy, i.e., modifying the simple rating curve equation by introducing a four-parameter equation and application of ensemble machine learning (ML) and ensemble empirical models, to estimate sediment loads. The ML models include artificial neural networks, multi-gene genetic programming (MGGP), and a hybrid MGGP-based model. Published field data at two measuring stations were used to assess the performance of different models employed in this study. The comparative analysis conducted in this study provides a novel comparison of sediment load estimations for three time scales. For instance, the ML-based simple average ensemble model (i.e., 556.5, 255.0, and 0.759) and the empirical-based nonlinear ensemble model (i.e., 549.1, 378.6, and 0.589) achieved the lowest root-mean-square errors and mean absolute errors and highest determination coefficients for the train and test monthly sediment data of the first station, respectively. Finally, the findings demonstrate that ensemble-based models generally improve the estimates of sediment loads at daily, 10-daily, and monthly scales.
Keywords: Sediment load; Rivers; Ensemble model; Machine learning; Sediment rating curve (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-023-03263-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03263-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-023-03263-4
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().