EconPapers    
Economics at your fingertips  
 

Climate change impact assessment on the water resources of the Upper Yamuna River Basin in India

Ravish K. Rathee () and Sudipta K. Mishra ()
Additional contact information
Ravish K. Rathee: G D Goenka University
Sudipta K. Mishra: G D Goenka University

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2024, vol. 26, issue 7, No 83, 18477-18498

Abstract: Abstract Climate change has ability to intensify the magnitude of flood and drought episodes, as well as their amplitude; also it has the potential to exacerbate hydrological extremes. It is crucial to forecast changes to hydrological regimes and determine the level of uncertainty around them to increase resilience and prepare for future changes. In order to enlighten long-term estimates, an attempt has been made to sustain the available water resources through Calibration and Validation of river discharge data using SWAT model for Upper Yamuna River Basin. Spatial climatic data were further crystallized to forecast climatic projection scenarios for Base line period, Mid-Century and End Century considering RCPs 2.6, 4.5 and 8.5. Result reveals that the average annual minimum temperature is estimated to be increased 1.4 °C in Mid-Century and 2.2 °C in End Century from the Base line Scenario while the average annual maximum temperature is found to be increased 1.5 °C in Mid-Century and 2.1 °C in End Century from the Base line Scenario. Further, while analyzing the hydrological components, Soil water percentage is expected to be increased in Mid-Century, whereas Percolation rate is found to be increased for all scenarios other than BL-MC (4.5) which is an indication of rise in Ground water. In addition to it, Surface flow is observed as a considerable increase from 4.33 to 72.69% in all scenarios. Also the Surface flow is more in case of End Century as compared to the Mid-Century. The estimated Ground water flow is found to be increased except BL-MC (4.5 & 8.5). Overall water yield has been estimated as a relative change from 7.06 to 18.70% based upon the specified conditions. The prediction for Evapotranspiration values is found as decreased in all scenarios except BL-MC (4.5 & 8.5). The outcome of the present study is very useful for planning of development strategies in the project area.

Keywords: Climate change; Hydrology; River basin; SWAT; Watershed (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10668-023-03398-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03398-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-023-03398-4

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03398-4