EconPapers    
Economics at your fingertips  
 

Ownership property size, landscape structure, and spatial relationships in the Edwards Plateau of Texas (USA): landscape scale habitat management implications

Edith González Afanador (), Michael E. Kjelland, X. Ben Wu, Neal Wilkins and William E. Grant
Additional contact information
Edith González Afanador: Universidad Nacional de Colombia
Michael E. Kjelland: Texas A&M University
X. Ben Wu: Texas A&M University
Neal Wilkins: Texas A&M University
William E. Grant: Texas A&M University

Environment Systems and Decisions, 2016, vol. 36, issue 3, 310-328

Abstract: Abstract The present research focused on using spatial analysis to determine relationships among land ownership property sizes and landscape structure, with a focus on conservation management implications. Indices and metrics of ownership property sizes and landscape structure were calculated for 20 km buffer areas around 31 North American Breeding Bird Survey transects, 12 located within the Edwards Plateau ecoregion and 18 in contiguous ecoregions. The number of bird species observed at each transect provided a measure of avian species richness associated with land cover classes for each respective transect (González in Urban influence on diversity of avifauna in the Edwards Plateau of Texas: effect of property sizes on rural landscape structure, Texas A&M University, 2005). Spatial correlations were calculated between each pair of the landscape indices. Spatial analysis identified a “threshold of habitat fragmentation” for the 500 acre (ac) ownership property size. Significant spatial correlations among variables showed that property sizes lower than 500 ac produced habitat fragmentation represented by a decrease in mean patch size (MN) and proximity among habitat patches (Index PROX). Spatial analysis also made possible the prioritization of ecological sub-regions of the Edwards Plateau for conservation or restoration. The Live Oak-Mesquite Savannah showed the highest average ownership property size (7305 ac) and the highest values of patch richness. Based on the results, management in the Live Oak-Mesquite Savannah sub-region should focus on the conservation of land mosaic diversity to assure native avian species turnover (Whittaker 1972). In Balcones Canyon Lands, 64 % of land was covered by farms smaller than 500 ac and the overall average ownership property size was above the threshold of fragmentation (1440 ac), implying that management policies there should focus both on habitat conservation and on restoration. In contrast, 71 % of land in the Lampasas Cut Plains was covered by farms smaller than 500 ac, and average ownership property size was very close to the fragmentation threshold (625 ac). Consequently, the results indicate that management in the Lampasas Cut Plains sub-region should focus on habitat restoration (e.g., corridors that connect isolated habitat patches). In general, the threshold of ownership property size, 500 ac, is important for conservation planning because below that threshold of property size, habitat patch size begins to decrease and the distance between equivalent patches of habitat increases. Isolated patches act as islands within a sea of less suitable habitat which produce negative effects on biodiversity. Identifying the spatial characteristics indicative of habitat fragmentation, or the likelihood thereof, is an important issue for conservation planning in places with urban sprawl influence.

Keywords: Landscape ecology; Landscape structure; Land fragmentation; Habitat fragmentation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10669-016-9604-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:envsyd:v:36:y:2016:i:3:d:10.1007_s10669-016-9604-7

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10669

DOI: 10.1007/s10669-016-9604-7

Access Statistics for this article

More articles in Environment Systems and Decisions from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:envsyd:v:36:y:2016:i:3:d:10.1007_s10669-016-9604-7