A MEA is a MEA is a MEA? Sequential decision making and the impact of different managed entry agreements at the manufacturer and payer level, using a case study for an oncology drug in England
Nasuh C. Buyukkaramikli (),
Peter Wigfield and
Men Thi Hoang ()
Additional contact information
Nasuh C. Buyukkaramikli: Janssen Pharmaceutica NV
Peter Wigfield: Ingress Health Nederland BV
Men Thi Hoang: Duy Tan University
The European Journal of Health Economics, 2021, vol. 22, issue 1, No 5, 73 pages
Abstract:
Abstract Background In a typical single-payer setting that uses an explicit cost-effectiveness (CE) threshold in its decision-making, the payer aims to maximize the net-monetary-benefit (NMB) given the CE threshold, whilst the manufacturer aims to maximize the expected discounted-cash-flow (DCF) resulting from the sales of that technology. Managed entry agreements (MEAs) are tools that are used to improve access to expensive technologies that would otherwise not be deemed to be cost-effective to payers. While simple discount on the list price is the most commonly applied MEA type, there are different forms, each having a different impact on the cost-effectiveness of the technology, on the lifetime DCF-per-patient and on the decision uncertainty. We aim to analyze the sequential decision-making (SDM) of different MEAs (i.e. simple discount, free treatment initiation, lifetime treatment acquisition cost-capping [LTTACC], performance-based money-back guarantee [MBG]) at the manufacturer and at the payer level, respectively. Methods We first model the SDM of the manufacturer and the payer as a sequential game and explain the challenges to find an equilibrium analytically. Then we propose a heuristic computational method to follow for each of the MEA types, based on practice. To demonstrate this SDM on a case study, a UK-based cost-utility analysis using a three-state, partitioned-survival-model was constructed to determine the cost-effectiveness of regorafenib versus best-supportive-care for the second-line treatment of hepatocellular carcinoma. The optimal agreement terms that would maximise the lifetime DCF-per-patient for each MEA, whilst remaining below the CE-threshold (£50,000/QALY gained) were obtained in the deterministic base-case. Robustness for each optimized MEA was then assessed using probabilistic sensitivity and scenario analyses, the value of information (VoI), and HTA-risk analyses. Results As expected, the introduction of all MEAs improved the probabilistic ICER and NMB values to (almost) acceptable levels, compared to the “no-MEA” case (ICER ~ £78,000/QALY-gained). The expected DCFs across the explored MEAs were all similar, whilst the payer strategy & uncertainty burden (PSUB) for regorafenib decreased in all MEAs explored. VoI analyses revealed that regorafenib mean-dose-intensity and time-on-treatment (ToT) parameters attributed most to the decision uncertainty. LTTACC provided the smallest PSUB and the most robust NMB estimates under parametric uncertainty. For scenarios assuming increased regorafenib ToT or mean-dose-intensity, LTACC again provided acceptable cost-effectiveness outcomes, whereas for scenarios assuming decreased regorafenib progression-free/overall survival effectiveness, only MBG resulted in plausible ICER values. In scenarios, where the source of uncertainty was not targeted by MEA parameters (e.g. the scenario assuming higher progressed disease resource utilization), all investigated MEA types resulted in unacceptable cost-effectiveness outcomes. Conclusion Each MEA type has a different implication. The impact of different MEAs on the NMB is more noteworthy than on the DCF, in relative terms, hence payers will benefit from the early participation of the MEA design rather than leaving this up to the prerogative of the manufacturer. While simple discount might be practical for implementation purposes, other MEAs can provide additional benefits to the payer in terms of increased NMB, reduced decision risk and reduced uncertainty. MEA performance should be investigated not only under parametric uncertainty, but also under-identified structural uncertainty, and the barriers of implementation should be considered thoroughly before choosing the most appropriate MEA type.
Keywords: Managed entry agreements; Risk sharing contracts; Cost-effectiveness; Health economics; Sequential decision making; Payer and manufacturer views; Reimbursement (search for similar items in EconPapers)
JEL-codes: C7 D61 I11 I18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10198-020-01228-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eujhec:v:22:y:2021:i:1:d:10.1007_s10198-020-01228-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10198/PS2
DOI: 10.1007/s10198-020-01228-2
Access Statistics for this article
The European Journal of Health Economics is currently edited by J.-M.G.v.d. Schulenburg
More articles in The European Journal of Health Economics from Springer, Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().