Economics at your fingertips  

Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses

Mark Oppe (), Daniela Ortín-Sulbarán, Carlos Vila Silván, Anabel Estévez-Carrillo and Juan M. Ramos-Goñi
Additional contact information
Mark Oppe: Axentiva Solutions, S.L.
Daniela Ortín-Sulbarán: Almirall
Carlos Vila Silván: Almirall
Anabel Estévez-Carrillo: Axentiva Solutions, S.L.
Juan M. Ramos-Goñi: Axentiva Solutions, S.L.

The European Journal of Health Economics, 2021, vol. 22, issue 5, No 5, 721 pages

Abstract: Abstract Background Uncertainty in model-based cost-utility analyses is commonly assessed in a probabilistic sensitivity analysis. Model parameters are implemented as distributions and values are sampled from these distributions in a Monte Carlo simulation. Bootstrapping is an alternative method that requires fewer assumptions and incorporates correlations between model parameters. Methods A Markov model-based cost–utility analysis comparing oromucosal spray containing delta-9-tetrahidrocannabinol + cannabidiol (Sativex®, nabiximols) plus standard care versus standard spasticity care alone in the management of multiple sclerosis spasticity was performed over a 5-year time horizon from the Belgian healthcare payer perspective. The probabilistic sensitivity analysis was implemented using a bootstrap approach to ensure that the correlations present in the source clinical trial data were incorporated in the uncertainty estimates. Results Adding Sativex® spray to standard care was found to dominate standard spasticity care alone, with cost savings of €6,068 and a quality-adjusted life year gain of 0.145 per patient over the 5-year analysis. The probability of dominance increased from 29% in the first year to 94% in the fifth year, with the probability of QALY gains in excess of 99% for all years considered. Conclusions Adding Sativex® spray to spasticity care was found to dominate standard spasticity care alone in the Belgian healthcare setting. This study showed the use of bootstrapping techniques in a Markov model probabilistic sensitivity analysis instead of Monte Carlo simulations. Bootstrapping avoided the need to make distributional assumptions and allowed the incorporation of correlating structures present in the original clinical trial data in the uncertainty assessment.

Keywords: Cost–utility analysis; Probabilistic sensitivity analysis; Bootstrapping; Multiple sclerosis; Cannabinoids; I18; I19 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10198/PS2

DOI: 10.1007/s10198-021-01285-1

Access Statistics for this article

The European Journal of Health Economics is currently edited by J.-M.G.v.d. Schulenburg

More articles in The European Journal of Health Economics from Springer, Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

Page updated 2021-07-24
Handle: RePEc:spr:eujhec:v:22:y:2021:i:5:d:10.1007_s10198-021-01285-1