EconPapers    
Economics at your fingertips  
 

Group-embeddings for NMR spin dual symmetries, to λ SA ⊢ n: Determinate [ 10 BH] 12 2− $\left( {SU\left( {m \leqslant 12} \right) \times \mathcal{S}_{12} \downarrow \mathcal{I}} \right)$ natural subduction via symbolic $\mathcal{S}_n$ combinatorial generators: Complete sets of bijective maps, CNP-weights

F. Temme ()

The European Physical Journal B: Condensed Matter and Complex Systems, 1999, vol. 11, issue 1, 177-185

Abstract: Modelling of the properties of high-spin isotopomers, as polyhedra- on-lattice-points which yield various symbolic-computational ${\mathcal{S}_{12} }$ -encodings of nuclear permutation (upto some specific SU(m) branching level), is important in deriving the spin-ensemble weightings of clusters, or cage-molecules. The mathematical determinacies of these, obtained here for higher m-valued $SU\left( m \right) \times \mathcal{S}_{12} \downarrow \mathcal{I}$ group embeddings, are compared with that of an established group embedding, in order to collate the spin physics of [ 11 BH] 12 2− $\left( {SU\left( {2\left( {m \leqslant 4} \right)} \right) \times \mathcal{S}_{12} \downarrow \mathcal{I}} \right)$ with that for [ 10 BH] 12 2− (SU(m ≤ 7) × ..)-analogue. The most symmetrical form of $\left[ {\left( {^{10} BH} \right) \left( {^{11} BH} \right)} \right]_6^{2 - } \left( {\left( {\mathcal{S}_6 \otimes \mathcal{S}_6 } \right) \downarrow \left( {\mathcal{S}_3 \otimes \mathcal{S}_3 } \right)} \right)$ anion provides a pertinent example of the $SU\left( {m > n} \right) \times \mathcal{S}_n \downarrow \mathcal{G}$ physics discussed in [10]. Retention of determinacy in the two $\mathcal{S}_{12} \downarrow \mathcal{I}$ cases is correlated to the completeness of the 1:1 bijective maps for natural embeddings of automorphic dual group NMR spin symmetries. The Kostka transformational coefficients of a suitable model ( $\mathcal{S}_n$ module, Schur fn.) play a important role. Our findings demonstrate that determinacy persists (to $SU\left( {m \sim {n \mathord{\left/ {\vphantom {n 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\mathcal{S}_n$ branching levels) more readily for embeddings derived from (automorphic) finite groups dominated by odd-permutational class algebras, such as the above $\mathcal{S}_{12} \downarrow \mathcal{I}$ , or the $SU\left( {m \leqslant 3} \right) \times \mathcal{S}_6 \downarrow \mathcal{D}_3$ case discussed in [16a,15,3d], compared to other examples — (e.g. as respectively, in press, and in [17b]): $SU\left( m \right) \times \mathcal{S}_8 \downarrow \mathcal{D}_4$ , $SU\left( m \right) \times \mathcal{S}_{10} \downarrow \mathcal{D}_5$ . Generality of the symbolic algorithmic difference approach is stressed throughout and the corresponding dodecahedral $SU\left( m \right) \times \mathcal{S}_{20} \downarrow \mathcal{I}$ maps are outlined briefly — for the wider applicability of SF-difference mappings, or of comparable $\mathcal{S}_n$ -symbolic methods, (e.g.) via [7]. Copyright Società Italiana di Fisica, Springer-Verlag 1999

Keywords: PACS. 02.10.-v Logic; set theory; and algebra; 33.20.Vq Vibration rotation analysis; 36.40.Mr Spectroscopy and geometrical structure of clusters; 33.25.+k Nuclear resonance and relaxation (search for similar items in EconPapers)
Date: 1999
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s100510050927 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:11:y:1999:i:1:p:177-185:10.1007/s100510050927

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1007/s100510050927

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:11:y:1999:i:1:p:177-185:10.1007/s100510050927