EconPapers    
Economics at your fingertips  
 

EELS study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions

L. Samet, D. Imhoff (), J.-L. Maurice, J.-P. Contour, A. Gloter, T. Manoubi, A. Fert and C. Colliex

The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 34, issue 2, 179-192

Abstract: A magnetic tunnel junction consists of two ferromagnetic conducting electrodes separated by an insulating thin layer. The performance of such a system strikingly depends on the last conducting atomic layers in contact with the insulator. Consequently, the present paper reports a nanoscale electron energy loss spectroscopy (EELS) study, which has been performed across a couple of La 0.66 Sr 0.33 MnO 3 ,/SrTiO 3 /La 0.66 Sr 0.33 MnO 3 tunnel junctions with different barrier thickness es (1.5 nm and 5 nm respectively). It aims at determining not only the chemical composition in the interface areas, but also the effect of the neighbouring atoms on their electronic structure. Using recent improvements in the STEM-EELS data acquisition and processing techniques (systematic use of spectrum-line and spectrum-image modes, multivariate statistical analysis, 2D energy deconvolution schemes, etc.), the local chemical information is better extracted with shorter acquisition times, while the large increase of the data set contributes to validate the results. Within the accuracy level of these measurements, the elemental composition of the different phases remains stable up to the interfaces with no evidence of extra doping. Furthermore, weak changes on the Mn-2p edge fine structures (weak shift to lower energy loss values and extra splitting on the top of the Mn L 3 line are observed on all the interfaces. They are interpreted as a consequence of a slight reduction of the local Mn valence likely accompanied by a strain induced change in local symmetry. The discussion is focussed on all spectral changes identified at a (sub)nanometer scale and their potential effects on the degradation of magnetic and transport properties measured, close to room temperature, at a macroscopic level. Copyright Springer-Verlag Berlin/Heidelberg 2003

Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00210-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:34:y:2003:i:2:p:179-192

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2003-00210-8

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:34:y:2003:i:2:p:179-192