EconPapers    
Economics at your fingertips  
 

Classical basis for quantum spectral fluctuations in hyperbolic systems

S. Müller ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 34, issue 3, 305-319

Abstract: We reason in support of the universality of quantum spectral fluctuations in chaotic systems, starting from the pioneering work of Sieber and Richter who expressed the spectral form factor in terms of pairs of periodic orbits with self-crossings and avoided crossings. Dropping the restriction to uniformly hyperbolic dynamics, we show that for general hyperbolic two-freedom systems with time-reversal invariance the spectral form factor is faithful to random-matrix theory, up to quadratic order in time. We re late the action difference within the contributing pairs of orbits to properties of stable and unstable manifolds. In studying the effects of conjugate points, we show that almost self-retracing orbit loops do not contribute to the form factor. Our findings are substantiated by numerical evidence for the concrete example of two billiard systems. Copyright Springer-Verlag Berlin/Heidelberg 2003

Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00226-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:34:y:2003:i:3:p:305-319

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2003-00226-0

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:34:y:2003:i:3:p:305-319