EconPapers    
Economics at your fingertips  
 

Evidence of an ion-beam induced crystalline-to-crystalline phase transformation in hafnia

A. Benyagoub ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 34, issue 4, 395-398

Abstract: Samples of monoclinic hafnia were irradiated with increasing fluences of 800 and 300 MeV Kr ions giving rise to a slowing down essentially caused by high electronic excitations. Their structural evolution was monitored in situ by the X-ray diffraction technique. The results indicate, for the first time to our knowledge, the occurrence in monoclinic hafnia of an ion-beam induced crystalline-to-crystalline phase transition. The new formed phase is very likely tetragonal and appears with an effective threshold in the deposited electronic energy loss which is around 20 keV nm -1 . In addition, the evolution of the amount of the produced phase with the ion fluence exhibits a sigmoidal shape suggesting a mechanism for phase transformation which needs two ion impacts. Some features of this phase transition are compared with those obtained in the case of zirconia, a well-known isomorphic material with hafnia. Copyright Springer-Verlag Berlin/Heidelberg 2003

Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00236-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:34:y:2003:i:4:p:395-398

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2003-00236-x

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:34:y:2003:i:4:p:395-398