Turbulent thermal convection in a closed domain: viscous boundary layer and mean flow effects
R. Verzicco ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 35, issue 1, 133-141
Abstract:
In this paper the effects of viscous boundary layers and mean flow structures on the heat transfer of a flow in a slender cylindrical cell are analysed using the direct numerical simulation of the Navier-Stokes equations with the Boussinesq approximation. Ideal flows are produced by suppressing the viscous boundary layers and by artificially enforcing the flow axisymmetry with the aim of checking some proposed explanations for the Nusselt number dependence on the Rayleigh number. The emerging picture suggests that, in this slender geometry,the presence of the viscous boundary layers does not have appreciable impact on the slope of the Nu vs. Ra relation while a transition of the mean flow is most likely the reason for the slope increase observed around Ra=2 x 10 9 . Copyright Springer-Verlag Berlin/Heidelberg 2003
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00264-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:35:y:2003:i:1:p:133-141
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2003-00264-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().