Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions
M. Eastwood,
F. Gebhard (),
E. Kalinowski,
S. Nishimoto and
R. Noack
The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 35, issue 2, 155-175
Abstract:
We calculate the density of states in the half-filled Hubbard model on a Bethe lattice with infinite connectivity. Based on our analytical results to second order in t/U, we propose a new ‘Fixed-Energy Exact Diagonalization’ scheme for the numerical study of the Dynamical Mean-Field Theory. Corroborated by results from the Random Dispersion Approximation, we find that the gap opens at $U_{\rm c}=4.43 \pm 0.05$ . Moreover, the density of states near the gap increases algebraically as a function of frequency with an exponent $\alpha=1/2$ in the insulating phase. We critically examine other analytical and numerical approaches and specify their merits and limitations when applied to the Mott-Hubbard insulator. Copyright Springer-Verlag Berlin/Heidelberg 2003
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00266-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:35:y:2003:i:2:p:155-175
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2003-00266-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().