Dynamical CPA approach to an itinerant fermionic spin glass model
M. Bechmann () and
R. Oppermann
The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 35, issue 2, 223-232
Abstract:
We study a fermionic version of the Sherrington-Kirkpatrick model including nearest-neighbor hopping on a $\infty$ -dimensional simple cubic lattices. The problem is reduced to one of free fermions moving in a dynamical effective random medium. By means of a CPA method we derive a set of self-consistency equations for the spin glass order parameter and for the Fourier components of the local spin susceptibility. In order to solve these equations numerically we employ an approximation scheme which restricts the dynamics to a feasible number of the leading Fourier components. From a sequence of systematically improved dynamical approximations we estimate the location of the quantum critical point. Copyright Springer-Verlag Berlin/Heidelberg 2003
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00272-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:35:y:2003:i:2:p:223-232
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2003-00272-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().