On $\mathsf{c=1}$ critical phases in anisotropic spin-1 chains
C. Degli Esposti Boschi,
E. Ercolessi,
F. Ortolani and
M. Roncaglia ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 35, issue 4, 465-473
Abstract:
Quantum spin-1 chains may develop massless phases in presence of Ising-like and single-ion anisotropies. We have studied c=1 critical phases by means of both analytical techniques, including a mapping of the lattice Hamiltonian onto an O(2) NL $\sigma$ M, and a multi-target DMRG algorithm which allows for accurate calculation of excited states. We find excellent quantitative agreement with the theoretical predictions and conclude that a pure Gaussian model, without any orbifold construction, describes correctly the low-energy physics of these critical phases. This combined analysis indicates that the multicritical point at large single-ion anisotropy does not belong to the same universality class as the Takhtajan-Babujian Hamiltonian as claimed in the past. A link between string-order correlation functions and twisting vertex operators, along the c=1 line that ends at this point, is also suggested. Copyright Springer-Verlag Berlin/Heidelberg 2003
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00299-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:35:y:2003:i:4:p:465-473
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2003-00299-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().