Conductance of a large point contact with Rashba effect
V. Ramaglia,
D. Bercioux (),
V. Cataudella,
G. Filippis,
C. Perroni and
F. Ventriglia
The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 36, issue 3, 365-375
Abstract:
We study the scattering of an electron of a 2DEG through a large point contact separating a region where the electrons are free and a region where the Rashba spin-orbit coupling is present. The scattering depends dramatically on the electron incidence angle showing double refraction within the Rashba region. For incidence not normal to the interface the electron spin state is not conserved. The calculated conductance exhibits an oscillating behavior as a function of spin state of the incident electrons with different spin down and spin up currents. Our model describes both a ferromagnetic semimetallic source and a simple metallic injection electrode. In the first case the electrons are injected in a pure spin state and in the second one they are unpolarized, that is in a statistical mixture of spin up and down states. In both the cases the passage through the large point contact produces spin polarized currents. Copyright Springer-Verlag Berlin/Heidelberg 2003
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00355-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:36:y:2003:i:3:p:365-375
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2003-00355-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().