Improvement of signal transmission through spike-timing-dependent plasticity in neural networks
S. Wang,
J. Xu,
F. Liu () and
W. Wang
The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 39, issue 3, 351-356
Abstract:
We explore the effects of spike-timing-dependent plasticity (STDP) on weak signal transmission in a noisy neural network. We first consider the network where an ensemble of independent neurons, which are subjected to a common weak signal, are connected in parallel to a single postsynaptic neuron via excitatory synapses. STDP can make the signal transmission more efficient, and this effect is more prominent when the presynaptic activities exhibit some correlations. We further consider a two-layer network where there are only couplings between two layers and find that postsynaptic neurons can fire synchronously under suitable conditions. Both the reliability and timing precision of neuronal firing in the output layer are remarkably improved with STDP. These results indicate that STDP can play crucial roles in information processing in nervous systems. Copyright Springer-Verlag Berlin/Heidelberg 2004
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00200-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:39:y:2004:i:3:p:351-356
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2004-00200-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().