Sympatric speciation in an age-structured population living on a lattice
A. Sousa ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 39, issue 4, 521-525
Abstract:
A square lattice is introduced into the Penna model for biological aging in order to study the evolution of diploid sexual populations under certain conditions when one single locus in the individual’s genome is considered as identifier of species. The simulation results show, after several generations, the flourishing and coexistence of two separate species in the same environment, i.e., one original species splits up into two on the same territory (sympatric speciation). As well, the mortalities obtained are in a good agreement with the Gompertz law of exponential increase of mortality with age. Copyright Springer-Verlag Berlin/Heidelberg 2004
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00225-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:39:y:2004:i:4:p:521-525
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2004-00225-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().