Ab-initio calculation of the metal-insulator transition in sodium rings and chains and in mixed sodium-lithium systems
W. Alsheimer and
B. Paulus ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 40, issue 3, 243-250
Abstract:
We study how the Mott metal-insulator transition (MIT) is influenced when we deal with electrons with different angular momenta. For lithium we found an essential effect when we include p-orbitals in the description of the Hilbert space. We apply quantum-chemical methods to sodium rings and chains in order to investigate the analogue of a MIT, and how it is influenced by periodic and open boundaries. By changing the interatomic distance we analyse the character of the many-body wavefunction and the charge gap. In the second part we mimic a behaviour found in the ionic Hubbard model, where a transition from a band to a Mott insulator occurs. For that purpose we perform calculations for mixed sodium-lithium rings. In addition, we examine the question of bond alternation for the pure sodium system and the mixed sodium-lithium system, in order to determine under which conditions a Peierls distortion occurs. Copyright Springer-Verlag Berlin/Heidelberg 2004
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00266-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:40:y:2004:i:3:p:243-250
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2004-00266-x
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().